RocksDB 是由 Facebook 基于 LevelDB 开发的一款提供键值存储与读写功能的 LSM-tree 架构引擎。用户写入的键值对会先写入磁盘上的 WAL (Write Ahead Log),然后再写入内存中的跳表(SkipList,这部分结构又被称作 MemTable)。LSM-tree 引擎由于将用户的随机修改(插入)转化为了对 WAL 文件的顺序写,因此具有比 B 树类存储引擎更高的写吞吐。
内存中的数据达到一定阈值后,会刷到磁盘上生成 SST 文件 (Sorted String Table),SST 又分为多层(默认至多 6 层),每一层的数据达到一定阈值后会挑选一部分 SST 合并到下一层,每一层的数据是上一层的 10 倍(因此 90% 的数据存储在最后一层)。
Levledb是Google的两位Fellow (Jeaf Dean和Sanjay Ghemawat)设计和开发的嵌入式K-V系统,读写性能非常彪悍,官方网站报道其写性能40万/s,读性能达到6万/s,写操作要远快于读操作。Rocksdb是Facebook公司在Leveldb基础之上开发的一个嵌入式K-V系统,在很多方面对Leveldb做了优化和增强,更像是一个完整的产品,比如:
1)Leveldb是单线程合并文件,Rocksdb可以支持多线程合并文件,充分利用多核的特性,加快文件合并的速度,避免文件合并期间引起系统停顿;
LSM型的数据结构,最大的性能问题就出现在其合并的时间损耗上,在多CPU的环境下,多线程合并那是LevelDB所无法比拟的。不过据其官网上的介绍,似乎多线程合并还只是针对那些与下一层没有Key重叠的文件,只是简单的rename而已,至于在真正数据上的合并方面是否也有用到多线程,就只能看代码了。
RocksDB增加了合并时过滤器,对一些不再符合条件的K-V进行丢弃,如根据K-V的有效期进行过滤。
2)Leveldb只有一个Memtable,若Memtable满了还没有来得及持久化,则会减缓Put操作引起系统停顿;RocksDB支持管道式的Memtable,也就说允许根据需要开辟多个Memtable,以解决Put与Compact速度差异的性能瓶颈问题。
3)Leveldb只能获取单个K-V;Rocksdb支持一次获取多个K-V,还支持Key范围查找。
4)Levledb不支持备份;Rocksdb支持全量和增量备份。RocksDB允许将已删除的数据备份到指定的目录,供后续恢复。
5)压缩方面RocksDB可采用多种压缩算法,除了LevelDB用的snappy,还有zlib、bzip2。LevelDB里面按数据的压缩率(压缩后低于75%)判断是否对数据进行压缩存储,而RocksDB典型的做法是Level 0-2不压缩,最后一层使用zlib,而其它各层采用snappy。
6)RocksDB除了简单的Put、Delete操作,还提供了一个Merge操作,说是为了对多个Put操作进行合并,优化了modify的效率。站在引擎实现者的角度来看,相比其带来的价值,其实现的成本要昂贵很多。个人觉得有时过于追求完美不见得是好事,据笔者所测(包括测试自己编写的引擎),性能的瓶颈其实主要在合并上,多一次少一次Put对性能的影响并无大碍。
7)RocksDB提供一些方便的工具,这些工具包含解析sst文件中的K-V记录、解析MANIFEST文件的内容等。有了这些工具,就不用再像使用LevelDB那样,只能在程序中才能知道sst文件K-V的具体信息了。
8)其他优化:增加了column family,这样有利于多个不相关的数据集存储在同一个db中,因为不同column family的数据是存储在不同的sst和memtable中,所以一定程度上起到了隔离的作用。将flush和compaction分开不同的线程池,能有效的加快flush,防止stall拖延停顿。增加了对write ahead log(WAL)的特殊管理机制,这样就能方便管理WAL文件,因为WAL是binlog文件。
LSM-Tree 的全称是:The Log-Structured Merge-Tree,是一种非常复杂的复合数据结构,它包含了 WAL(Write Ahead Log)、跳表(SkipList)和一个分层的有序表(SSTable,Sorted String Table)
1) MemTable
MemTable是在*内存*中的数据结构,用于保存最近更新的数据,会按照Key有序地组织这些数据,LSM树对于具体如何组织有序地组织数据并没有明确的数据结构定义,例如Hbase使跳跃表来保证内存中key的有序。
因为数据暂时保存在内存中,内存并不是可靠存储,如果断电会丢失数据,因此通常会通过WAL(Write-ahead logging,预写式日志)的方式来保证数据的可靠性。
2) Immutable MemTable
当 MemTable达到一定大小后,会转化成Immutable MemTable。Immutable MemTable是将转MemTable变为SSTable的一种中间状态。写操作由新的MemTable处理,在转存过程中不阻塞数据更新操作。
3) SSTable(Sorted String Table)
有序键值对***集合,是LSM树组在磁盘***中的数据结构。为了加快SSTable的读取,可以通过建立key的索引以及布隆过滤器来加快key的查找。
这里需要关注一个重点,LSM树(Log-Structured-Merge-Tree)正如它的名字一样,LSM树会将所有的数据插入、修改、删除等操作记录(注意是操作记录)保存在内存之中,当此类操作达到一定的数据量后,再批量地顺序写入到磁盘当中。这与B+树不同,B+树数据的更新会直接在原数据所在处修改对应的值,但是LSM数的数据更新是日志式的,当一条数据更新是直接append一条更新记录完成的。这样设计的目的就是为了顺序写,不断地将Immutable MemTable flush到持久化存储即可,而不用去修改之前的SSTable中的key,保证了顺序写。
因此当MemTable达到一定大小flush到持久化存储变成SSTable后,在不同的SSTable中,可能存在相同Key的记录,当然最新的那条记录才是准确的。这样设计的虽然大大提高了写性能,但同时也会带来一些问题:
1)冗余存储,对于某个key,实际上除了最新的那条记录外,其他的记录都是冗余无用的,但是仍然占用了存储空间。因此需要进行Compact操作(合并多个SSTable)来清除冗余的记录。 2)读取时需要从最新的倒着查询,直到找到某个key的记录。最坏情况需要查询完所有的SSTable,这里可以通过前面提到的索引/布隆过滤器来优化查找速度。
从上面可以看出,Compact操作是十分关键的操作,否则SSTable数量会不断膨胀。在Compact策略上,主要介绍两种基本策略:size-tiered和leveled。
不过在介绍这两种策略之前,先介绍三个比较重要的概念,事实上不同的策略就是围绕这三个概念之间做出权衡和取舍。
1)读放大:读取数据时实际读取的数据量大于真正的数据量。例如在LSM树中需要先在MemTable查看当前key是否存在,不存在继续从SSTable中寻找。 2)写放大:写入数据时实际写入的数据量大于真正的数据量。例如在LSM树中写入时可能触发Compact操作,导致实际写入的数据量远大于该key的数据量。 3)空间放大:数据实际占用的磁盘空间比数据的真正大小更多。上面提到的冗余存储,对于一个key来说,只有最新的那条记录是有效的,而之前的记录都是可以被清理回收的。
见https://zhuanlan.zhihu.com/p/181498475
我们已经解释了读取数据和写入数据的过程,那么删除数据又是如何处理的呢?我们已经知道 SSTable 是不可变的,所以里面的数据当然也不能够删除。其实删除操作其实和写入数据的操作是一样的,当需要删除数据的时候,我们把一个特定的标记(我们称之为 墓碑(tombstone) )写入到这个key对应的位置,以标记为删除。
上图演示了原来 key 为 dog
的值为 52
,而删除之后就会变成一个墓碑的标记。当我们搜索键 dog
的时候,将会返回数据无法查询,这就意味着删除操作其实也是占用磁盘空间的,最后墓碑的值将会被压缩,最后将会从磁盘删除。
当 LSM-Tree 收到一个写请求,比如说:PUT foo bar,把 Key foo 的值设置为 bar。首先,这条操作命令会被写入到磁盘的 WAL 日志中(图中右侧的 Log),这是一个顺序写磁盘的操作,性能很好。这个日志的唯一作用就是用于故障恢复,一旦系统宕机,可以从日志中把内存中还没有来得及写入磁盘的数据恢复出来。
然后数据会被写入到内存中的 MemTable 中,这个 MemTable 就是一个按照 Key 组织的跳表(SkipList),跳表和平衡树有着类似的查找性能,但实现起来更简单一些。写 MemTable 是个内存操作,速度也非常快。数据写入到 MemTable 之后,就可以返回写入成功了。这里面有一点需要注意的是,LSM-Tree 在处理写入的过程中,直接就往 MemTable 里写,并不去查找这个 Key 是不是已经存在了。
这个内存中 MemTable 不能无限地往里写,一是内存的容量毕竟有限,另外,MemTable 太大了读写性能都会下降。所以,MemTable 有一个固定的上限大小,一般是 32M。MemTable 写满之后,就被转换成 Immutable MemTable,然后再创建一个空的 MemTable 继续写。这个 Immutable MemTable,也就是只读的 MemTable,它和 MemTable 的数据结构完全一样,唯一的区别就是不允许再写入了
当一个 Memtable 写满了之后,就会变成 immutable 的 Memtable,RocksDB 在后台会通过一个 flush 线程将这个 Memtable flush 到磁盘,生成一个 Sorted String Table(SST) 文件,放在 Level 0 层。当 Level 0 层的 SST 文件个数超过阈值之后,就会通过 Compaction 策略将其放到 Level 1 层,以此类推。
到这里,虽然数据已经保存到磁盘上了,但还没结束,因为这些 SSTable 文件,虽然每个文件中的 Key 是有序的,但是文件之间是完全无序的,还是没法查找。这里 SSTable 采用了一个很巧妙的分层合并机制来解决乱序的问题。
SSTable 被分为很多层,越往上层,文件越少,越往底层,文件越多。每一层的容量都有一个固定的上限,一般来说,下一层的容量是上一层的 10 倍。当某一层写满了,就会触发后台线程往下一层合并,数据合并到下一层之后,本层的 SSTable 文件就可以删除掉了。合并的过程也是排序的过程,除了 Level 0(第 0 层,也就是 MemTable 直接 dump 出来的磁盘文件所在的那一层。)以外,每一层内的文件都是有序的,文件内的 KV 也是有序的,这样就比较便于查找了。
然后我们再来说 LSM-Tree 如何查找数据。查找的过程也是分层查找,先去内存中的 MemTable 和 Immutable MemTable 中找,然后再按照顺序依次在磁盘的每一层 SSTable 文件中去找,只要找到了就直接返回。这样的查找方式其实是很低效的,有可能需要多次查找内存和多个文件才能找到一个 Key,但实际的效果也没那么差,因为这样一个分层的结构,它会天然形成一个非常有利于查找的情况:越是被经常读写的热数据,它在这个分层结构中就越靠上,对这样的 Key 查找就越快。
比如说,最经常读写的 Key 很大概率会在内存中,这样不用读写磁盘就完成了查找。即使内存中查不到,真正能穿透很多层 SStable 一直查到最底层的请求还是很少的。另外,在工程上还会对查找做很多的优化,比如说,在内存中缓存 SSTable 文件的 Key,用布隆过滤器避免无谓的查找等来加速查找过程。这样综合优化下来,可以获得相对还不错的查找性能。
https://docs.pingcap.com/zh/tidb/stable/rocksdb-overview
https://blog.csdn.net/weixin_44607611/article/details/113742388
https://zhuanlan.zhihu.com/p/181498475
https://segmentfault.com/a/1190000039269078
https://www.cnblogs.com/orange-CC/p/13212042.html